
1040 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58, NO. 3, JUNE 2011

Single Event Test Methodologies and System Error
Rate Analysis for Triple Modular Redundant Field

Programmable Gate Arrays
Gregory Allen, Member, IEEE, Larry D. Edmonds, Gary Swift, Member, IEEE, Carl Carmichael, Chen Wei Tseng,

Kevin Heldt, Scott Arlo Anderson, and Michael Coe

Abstract—We present a test methodology for estimating
system error rates of Field Programmable Gate Arrays (FPGAs)
mitigated with Triple Modular Redundancy (TMR). The test
methodology is founded in a mathematical model, which is also
presented. Accelerator data from 90 nm Xilinx Military/Aerospace
grade FPGA are shown to fit the model. Fault injection (FI) results
are discussed and related to the test data. Design implementation
and the corresponding impact of multiple bit upset (MBU) are
also discussed.

Index Terms—Error rate calculation, field programmable gate
array, single event upset, triple modular redundancy.

I. INTRODUCTION

V ARIOUS methodologies for error detection and correc-
tion (EDAC) have been developed over the years to miti-

gate the system-level impact of device errors. The fundamental
function of an EDAC mitigated system is to limit the effect of
bit-errors at the system level. Devices hardened against single
event upset (SEU) via EDAC require unconventional methods
for estimating system error rates for space environments; simply
integrating a cross-section versus linear energy transfer (LET)
curve with an environmental LET spectrum is insufficient as the
calculated system-error cross-section has a upset error rate de-
pendence [1]–[4] (flux dependence if the LET is constant). The
error rate dependence occurs in systems mitigated through re-
dundancy due to the need for two upsets to occur in a given loca-
tion in a set window of time. Hence, the greater the rate of upset,
the higher the probability that the error will occur. This research
specifically targets TMR-based EDACmitigation, implemented
within 90 nm Xilinx Static Random Access Memory (SRAM)
based FPGAs. The approach that we present is to experimen-
tally (via a particle accelerator) derive system error rates as a
function of the underlying bit-flip rate. Theoretical models are

Manuscript received September 17, 2010; revised November 29, 2010; ac-
cepted December 28, 2010. Date of publication April 07, 2011; date of current
version June 15, 2011.
G. Allen and L. Edmonds are with the Jet Propulsion Laboratory, California

Institute of Technology, Pasadena, CA 91109USA (e-mail: gregory.r.allen@jpl.
nasa.gov).
G. Swift, C. Carmichael, and C. W. Tseng are with Xilinx Inc., San Jose, CA

80503 USA (e-mail: gswift@xilinx.com; carlc@xilinx.com; chenweit@xilinx.
com).
K. Heldt, S. A. Anderson, and M. Coe are with SEAKR Engineering Inc.,

Centennial, CO 80111 USA.
Digital Object Identifier 10.1109/TNS.2011.2105282

TABLE I
XILINX VIRTEX-4 XQR4VLX200 FEATURE SET

Only real memory cells in the Configuration Bit Stream are counted here
(not counting BRAM)
MAC=multiply-and-accumulate block for digital signal processing (DSP)

presented, and compared to data obtained at flux levels practical
for experimental work, that can be extrapolated to the lower flux
levels experienced in space.
A complimentary approach to estimating system error rates

discussed in this paper is fault injection. In FPGAs, fault injec-
tion is a technique whereby configuration bits are inverted to
simulate an SEU, while test vectors are applied and the device
output monitored. While fault injection is not comprehensive in
the evaluation of failure modes of an FPGA, we have shown it
to be very representative of the measured system error rates, as
single points of failure in a design is an effective approxima-
tion to the overall system error rate. It should be noted that this
methodology only applies to devices whose error rates are dom-
inated by a single upset mode (in this case configuration upsets).
This does not apply to devices where error rates are determined
via various SEE, such as SEU in different resources, or a com-
bination of SET and SEU.

II. BACKGROUND

In this section we provide a high-level device description in
order to provide the reader with an architectural model to better
understand the error rate model. We also provide an overview
of the implemented designs and an abbreviated look into the
error-rate model.

A. Device Description

For this testing we targeted a Xilinx XQR4VLX200, which
is in the Virtex-4 family of 1.2 V SRAM-based FPGA. Table I
below provides a list of the architecture resources. See [5]–[7]
for detailed device description.

0018-9499/$26.00 © 2011 IEEE
Nuclear Science, IEEE Transactions on Volume: 58 , Issue: 3 , Part: 2
Digital Object Identifier: 10.1109/TNS.2011.2105282
Publication Year: 2011 , Page(s): 1040 - 1046

ALLEN et al.: SINGLE EVENT TEST METHODOLOGIES AND SYSTEM ERROR RATE ANALYSIS 1041

TABLE II
XQR4VLX200 RESOURCE UTILIZATION

The following device architecture description corresponds to
Virtex-4 family of FPGAs, but can generally be applied to all
Virtex devices up to Virtex-4. The configuration logic block
(CLB) is the fundamental component of the FPGA that provides
function generators, registers, and routing controls. The CLB
allows for implementation of macros or other functions. Each
CLB is connected to a switch matrix and then to the general
routingmatrix. A basic understanding of the CLB and the imple-
mentation options surrounding it is imperative in mitigating var-
ious SEE responses. There are four slices in any given CLB and
each slice contains 2 look-up tables (LUT), 2 registers [flip-flops
(FF) or latches], and carry logic. Two of the 4 slices in each
CLB can be configured into 64 bits of distributed RAM (LU-
TRAM) or 64 bits of shift registers (SRL16). Each LUT can be
configured into an arbitrary, user-defined, 4-input Boolean func-
tion. The registers can either be configured as edge-triggered
D-type flip-flops or level sensitive latches. The control signals
include clock (CLK), clock enable (CE), and set/reset (SR). The
control signals of the registers, along with control signals of
other primitives in the device, are provided logic levels with
weak keeper pull-ups and pull-downs known as half-latches.
Half-latches are fixed within the FPGA, i.e. they are not con-
trolled by programmable bits and therefore cannot be scrubbed,
but are routed to the correct location. The weak resistive ties can
be overridden by any hard routing signal. The functionality of
all of the architectural components are defined and/or initialized
by configuration bits. SEU of the configuration bit is the dom-
inating error mode from a system perspective. That is to say,
SEU to configuration bits dominate system-level failures rela-
tive to upsets to flip-flops, BRAMs, LUTs, etc.

B. Design Description

Two sets of designs were studied. The first was a scalable
“counter” design and the second was a digital clock manager
(DCM) mitigation design. All designs used the Xilinx TMR-
Tool [8], [9] to automate the triplication process. The counter
design was implemented both as a fully mitigated and partially
mitigated design. Table II provides an overview of the design’s
resource utilization.
The partially mitigated design left certain design elements

unmitigated (untriplicated). In each of the counter designs,
a module of 13 8-bit counters was implemented as the base
building block and scaled to fill the design. Single, triplicated
clocks and reset lines were provided for the scaled counter
designs. Unique initialization values were used for each of the
8-bit counters.
The mitigated DCM design consisted of three separate

DCMs (such that a single mitigated DCM block consists

of three individual DCMs), each in their own clock domain
with no clock voting taking place (although control logic was
triplicated). The design was implemented with GLUTMASK
disabled, i.e. the DCM’s dynamic reconfiguration port (DRP)
associated bits were being scrubbed. Without GLUTMASK
disabled, the DRP bits would not be scrubbed. Each output
clock of each individual DCM fed a two-bit counter, whose
output went into a minority voter. If a discrepancy occurred
in the output counters, the DCM was reset. A system failure
was counted if two or more DCMs needed to be reset at the
same time, where “same time” is defined as happening within
a single scrub cycle. All counter outputs and reset counts were
monitored and recorded in a strip-chart during the tests.

C. Model Description

Before discussing how to predict and measure error rates on
TMR’ed systems, a set of terminology must be established. As
discussed in detail in [8], for every feedback path or register, a
triplicated set of majority voters is inserted. This grouping of
triplicated logic, registers, and voters is referred to as Groups,
and the number of them is denoted in the following equations
as . The scrub time, , is the period by which the device is
monitored and scrubbed for SEU. The underlying per-bit upset
rate (bit-errors per bit-second), , is a product of two measure-
ment parameters: the per-bit configuration SEU cross-section

and the ion flux, . A per-bit cross section is cal-
culated by dividing static upsets by fluence, and is assigned to
the effective LET of the test particle selected by the test engi-
neer (see Section Static SEU Response in Section IV for ex-
ample). Typically, once a convenient effective LET is selected,
only the flux is varied to achieve data that is
plotted against the theoretical prediction. While either param-
eter can be varied to achieve various values of , the flux is
generally varied to save time at the accelerator. For each run,
the system-error cross-section (per device) is calculated in the
usual manner (the number of system errors divided by the total
fluence). The system-error cross-section is multiplied by the
recorded flux and the system-error rate (system errors/sec), ,
is the product. The system-error rate is then plotted against the
raw bit-flip rate showing an experimental determination of as
a function of .
The theoretical determination of and its approximation

[(4)], which is derived in [3], is given by

(1)
where represents the number of configuration bits in a single
triplicated domain of the ith group. The exact (1) can be approx-
imated as

(2)

1042 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58, NO. 3, JUNE 2011

where , , and are three moments instead of the com-
plete set of moments. These three are defined by

In practice, , , and typically have the same
values. Approximating the number of bits in a triplicated
domain is very impractical. In contrast, the number of groups,
, is fairly easy to estimate using a tool such as FPGA editor

that can count the number of instantiations given by a name,
and is typically well defined by the designer.
The above approximation ((2)) was augmented to fit data that

contained single points of failure, i.e. unmitigated circuitry. The
augmented approximation, derived in the Appendix, is given as,

(3)

where is the total number of unmitigated configuration bits,
and is calculated from (2) for the mitigated bits. An approxi-
mation to (2) was derived and described as

(4)

III. EXPERIMENTAL PROCEDURE

A. Facilities

The DCM testing was performed at Lawrence Berkeley Na-
tional Laboratory’s (LBNL) 88-inch cyclotron in vacuum. A 16
MeV per AMU Argon beam was used with an effective LET
of 7.27 . The range of this beam is 256 um
in silicon. The mitigated counter testing was performed at the
Texas A&MCyclotron in air. A 24.8 MeV per AMUArgon and
Krypton beamwere used to provide an effective LETs of 6.4 and
27.9 respectively. The backside of the test de-
vices were thinned to a nominal thickness of 100 .

B. Accelerator Test Methodology

Prior to performing mitigated testing, the underlying upset
rate must be established as discussed in [5]. When testing a
mitigated design, a convenient LET is selected, where “conve-
nient” means that adequate counting statistics can be obtained
from flux levels available at the accelerator and using reason-
able beam run times. It is important to note that the LET selected
should, if possible, be in the saturated region of the
curve. If it is selected in the knee or below, slight variations in
LET measurements will greatly affect . In this set of tests, the
flux is varied from one run to the next. For each run, the system
error cross section (per device and defined in the usual way, i.e.,

counts divided by fluence), denoted , is measured and
the flux is recorded. This produces a plot of the system error
cross section as a function of flux. This plot is then converted
into a plot of versus by multiplying the vertical coordinate

by to obtain , and by multiplying the horizontal
coordinate by (where is the LET used during
the second set of tests) to obtain . The final result is an experi-
mental determination of as a function of .

C. Fault Injection Test Methodology

Partial reconfiguration fault injection is performed in a similar
manner to a configuration readback-scrubbing routine. When
this approach is applied, a configuration controller dynamically
and partially reconfigures the configuration bitstream through
the SMAP or JTAG port. While it is possible to perform dy-
namic partial reconfiguration through programming tools such
as iMPACT, similarly to full reconfiguration, it is a very manual
practice, and again, full coverage is impractical to accomplish.
One method to attain full coverage is accomplished through

iterative single-bit, partial reconfiguration fault injection; such
was the method used in this work. The Xilinx Radiation Test
Consortium’s fault injection system employs an automated con-
figuration controller (CONFIGMON) and functional monitor
(FUNCMON) that handshake with each other. The state flow
for verifying a design is as follows:
Upon power up, CONFIGMON is initialized and configures

the DUT. It is then in an “IDLE” state until a command is given.
Once the command to inject faults is given, a corrupted frame is
written to the DUT. Anywhere between 1 and 8 bits can be cor-
rupted in a single frame during any given write. Once the write
has been confirmed, CONFIGMONwill request FUNCMON to
run through a user-defined set of test vectors to detect whether
or not the fault injection caused a system error. Once the test
vectors have fully exercised the DUT, FUNCMON reports that
is has completed its test and reports the system status (system
failure or not). If FUNCMON reports a system failure, the ad-
dress and bit(s) of the injected fault(s) are recorded in a register
that is strip charted. For every observed error, recovery methods
such as system reset, configuration scrub, or full reconfiguration
are attempted sequentially and recorded until full functionality
is regained. If no system error is reported no action is required.
The corrupted bit within the frame is then scrubbed (corrected)
then the next bit within that frame is corrupted. Once all bits
within the frame have been corrupted, the frame address register
(FAR) is incremented, and process repeats. The fault injection
core has the capability of performing the fault injection with and
without SEFI detection. Upon SEFI detection, the user has the
option to have an automated recovery (automatically record the
SEFI and pulse PROG to reconfigure) or to pause, remain in the
IDLE state, and manually reconfigure the device. This process
is repeated for the entire bitstream.
Depending upon the size of the device, set of functional test

vectors, and speed setting of the fault injector, this process
may take minutes to weeks to complete. However, the resultant
number of single points of failure is used to achieve an effective
approximation to the system error rate of the device.

ALLEN et al.: SINGLE EVENT TEST METHODOLOGIES AND SYSTEM ERROR RATE ANALYSIS 1043

Fig. 1. Static SEU per-bit cross-section versus effective LET for an
XQR4VLX200’s configuration cells [5].

IV. TEST RESULTS AND DISCUSSION

A. Static SEU Response

The static SEU response is shown in Fig. 1. A full description
of how the data was acquired and fitting parameters is available
in [5].

B. Fault Injection Results

Fault injection was performed on each design, and after sev-
eral iterations, it was found that there were no single points of
failure in the fully mitigated counter design, nor the mitigated
DCM design. The partially mitigated counter design exhibited
12 fault injection points that recovered via reset alone, and 4016
that recovered via a reset and scrub.
The iterative process of triplication and fault injection exem-

plified how automated triplication isn’t a push-button process.
This form of mitigation requires in depth mitigation verifica-
tion. To achieve full triplication, it is necessary to apply area
constraints to the triplicated domains, else routing bits will be-
come single points of failure due to domain crossing. Area con-
straints physically separate user-defined portions of a design. In
this instance, we applied the area constraints to the three tripli-
cated domains, physically separating them on the chip to min-
imize the likelihood of the place and route tools implementing
the design in such a way that domain crossing occurs. However,
this can severely limit the overall size and speed of the design.
Tradeoffs between performance and reliability must be quanti-
fied and decided upon. The application of area constraints also
reduces the probability of MBU inducing system-level failures.

C. Mitigated Results, Rate Analysis, and Implications of Test
Results

For both of the counter designs, was engineered to be
0.669 seconds. was estimated to be 11440 for the fully miti-
gated design, and 8650 for the partiallymitigated design through
the use of the Xilinx PlanAhead Tool [10], which provides re-
source utilization statistics including voters. From this data,
is determined. was measured to be 4016 for the partially
mitigated design from the fault injection results. Figs. 2 and 3
show accelerator data (upper curve in Fig. 3) and the theoretical

Fig. 2. Experimental data shown with the theoretical model (2) for� versus �
of the fullymitigated design. Vertical error bars represent the Poisson distributed
statistical error in counting system error events. The horizontal error bars rep-
resent recorded fluctuations in the ion beam flux when recorded (instantaneous
flux was not recorded for every run).

Fig. 3. Experimental data and fit (upper fit) for the partially mitigated counter
design shownwith the theoretical model (3) for� versus � of the partially miti-
gated design. Vertical error bars represent the Poisson distributed statistical error
in counting system error events. The horizontal error bars represent recorded
fluctuations in the ion beam flux when recorded (instantaneous flux was not
recorded for every run).

fit (lower curve in Fig. 3) for the fully and partially mitigated de-
signs, respectively. The theoretical curve in Fig. 3 represents a
perfectly TMR’ed design, (2), which we do not have. The upper
fit corresponds to (3), where single points of failure have been
taken into account.
The remaining variables in the theoretical fit, , , and
(the three moments of the quantities), are defined by

fitting the model to the experimental data. The moments were
found to be 122 and 302 for the fully and partially mitigated
designs respectively. Once an appropriate fit is defined, rates
in a given space environment should be estimated by first
estimating the expected raw bit-flip rate for that environment.
Then, the appropriate fit (e.g., the fit used to produce the curve
in Fig. 3 for the fully mitigated design) is used to estimate the
system error rate. For example, the expected raw bit flip rate
for a Virtex-4 device due to GCR in solar minimum conditions
is [5]. When that is
applied to the fully mitigated design, we can expect an error
rate of system errors/second, or

1044 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58, NO. 3, JUNE 2011

Fig. 4. Experimental data shown with the small-r approximation (4) for �
versus � of the partially mitigated design. Vertical error bars represent the
Poisson distributed statistical error in counting system error events.

system errors/millennium. When applied to the partially mit-
igated design, we can expect an error rate of
system-errors/second, or approximately one event every 2.5
years. The failure rate for the partially mitigated design is
the same as the expected upset rate for 4016 configuration
bits, the number of single points of failure in the design (i.e.

times 4016 bits
equates to). What this shows
us is that if properly implemented, fault injection can be a very
accurate tool to predict system error rates. However, the ac-
celerator will always produce the most exhaustive verification.
Furthermore, the model can also be used to predict system error
rates from high-flux events such as solar flares.
Other predictions can also be made. Once accelerator data is

acquired to verify accuracy of the R-model, the design engineers
can now alter scrub times to see how that will affect the failure
rate. For example, instead of scrubbing the fully mitigated de-
sign at , we implement a scheme where
the configurationmanager blindly reconfigures the part once per
day. The predicted system error rate now becomes ,
or a little more than 1.6 system errors per century (on the order
of the device SEFI rate). It should be noted that if the same re-
configuration methodology is applied to the partially mitigated
design, it does not affect the failure rate, as the single points
of failure dominate the system error rate. However, the scrub
time will affect the recovery rate, i.e., unless the configuration
manager is alerted to the functional failure, the system will not
recover until the blind reconfiguration is executed.
The fit shown in Fig. 4 shows a quadratic relationship between

the system error rate for DCMs and the raw bit flip rate, as we
expect to see. The small-r approximation was used to fit this
data, and as such is only applicable for small , i.e. the fit does
not saturate. The result reinforces the belief that the design is
correctly TMR’ed (as implied from the fault injection testing).
A space rate for this design can now be extrapolated by

extending this trend down to lower flux levels encountered
in space. Using the same (GCR, solar minimum) as in the
previous examples and extrapolating the quadratic fit from
Fig. 4 to the expected bit flip rate, we get a failure rate of ap-
proximately system errors per DCM circuit-century,
i.e. once every 10,000 years. This rate compared to the device
SEFI rate, which for a GEO orbit is approximately one per

century, implies a more than satisfactory rate for this mitigation
strategy. The device SEFI error rate is independent of design,
and cannot be mitigated out. The SEFI error rate is the best
system error rate one can expect to achieve from these devices,
so once a design has been mitigated below that rate, the device
will have achieved maximum robustness.
It should be noted that all testing was performed at normal

incidence. While no MBU effects were observed in the data
(namely due to the area constraints applied to the designs), the
probability of MBU induced system failures will increase at
angle. This effect was not quantified in this study, and is a pos-
sible area of future work. MBU effects will manifest within the
data as single points of failure. That is to say, at low bit-flip rates,
MBU induced system errors will begin to show the same devi-
ation from the model as single points of failure.

V. SUMMARY

In summary, we have presented amodel and test methodology
for determining error rates of TMR’ed systems. We have shown
that the model fits accelerator data and correlates to bench-top
fault injection measurements.

APPENDIX

1) System Error Rates for Devices Having Partial TMR Pro-
tection: A previous analysis [3] calculated system error rates
produced by single-event upsets in triple-modular redundancy
(TMR) devices. The previous analysis considered devices that
are fully protected by TMR. Here we consider devices in which
one portion is protected by TMRwhile another portion is not. A
portion of the device (e.g., a memory array) is fully protected by
TMR, while another portion (e.g., an output buffer) has no TMR
protection. The protected portion is called “System-P” and the
unprotected portion is called “System-U” in the figure. There
is an infinite variety of ways in which a device can be partially
protected by TMR, but selecting a particular prototype for illus-
tration makes visualization easier. The entire device is a black
box in the sense that the only thing that is observable is the signal
at the output. The outside world cannot distinguish an error in
System-P from an error in System-U because either one will
produce an error at the output. There is an internal distinction,
which affects the probability that an error will occur, because
an error in System-P is a TMR error as defined in [3], while an
error in System-U is one or more of any type of single-event ef-
fect (e.g., bit flips, resets, SEFI) that have no TMR mitigation.
For the prototype selected for discussion, System-U is suscep-
tible to bit flips, and any bit flip in this system at any time will
produce an error at the device output.
As previously stated, a system error is either a TMR error in

System-P, or a bit flip (one or more) in System-U, or both. Even
with a system error already defined, the system error rate still
requires a definition because it depends on the counting con-
vention. We will follow the same convention used in [3], so
we start with a review of the convention used there. This re-
view focuses on System-P. The counting convention used in [3]
for System-P was motivated by the assumption that the device
output is checked for errors at the end of each TMR cycle. Er-
rors in multiple TMR groups during the same cycle are seen at

ALLEN et al.: SINGLE EVENT TEST METHODOLOGIES AND SYSTEM ERROR RATE ANALYSIS 1045

the device output as one system error, so there can be at most
one System-P error per cycle. The error rate (denoted for
System-P) is defined to be the expected number of errors (de-
noted for System-P) during one cycle divided by the cycle
duration , i.e.,

The expected number follows the counting convention that
the number of System-P errors during one cycle is either 0 or 1,
so the expected number is the same as the probability (denoted

for System-P) of an error during one cycle. This gives

(A1)

Now consider the composite system consisting of System-P
and System-U taken together. The error rate for the composite
system, denoted , is defined by

where is the expected number of errors during one cycle for
the composite system. Multiple bit errors in System-U during
the same cycle are seen at the device output at the end of the
cycle as one output error, so there can be at most one system
error per cycle for the composite system. The number of system
errors for the composite system during one cycle is either 0 or 1,
so the expected number is the same as the probability, denoted
, of an error in the composite system during one cycle. This

gives

(A2)

To continue with the analysis, we need to evaluate the proba-
bility appearing in (A2). The probability of a System-P error
during one cycle was already denoted . Let denote the
probability of a System-U error during one cycle, which is the
probability of one or more bit flips in System-U during one
cycle. The probability function is an additive set function and
has the property that can be written in generic notation as

where and are arbitrary events (subsets of the sample
space). If the events are statistically independent we also have

and the above equation becomes

In particular, let the event A be a System-P error and let the event
B be a System-U error. These events are statistically indepen-
dent so the above equation applies and gives

Substituting this into (2) and using (1) gives

(A3)

To finish the analysis we need to evaluate and ap-
pearing in (A3). Recall that is the probability of one or more
bit flips in System-U during one cycle. Poisson statistics gives

where is the number of bits in System-U and is the
per-bit bit-flip rate for the bits in System-U. Substituting this
result into (A3) gives

(A4)

Finally, an expression for was derived in [3] and is given by

(A5)

where is the raw (i.e., with TMRdisabled) per-bit bit-flip rate
for the bits in System-P, and the parameters , , , and
are defined in [3]. Note that (A5) is actually an approximation,
but the accuracy is so high that it is considered exact in the
discussions given here.
The final result consists of (A4) and (A5). This result simpli-

fies if and are both sufficiently small because (A5) re-
duces to

while the exponential function in (A4) can also be approxi-
mated. The result is

(A6)

If the bits are the same in both subsystems, so that and
have a common value that can be denoted , then a plot of
versus should follow the quadratic form given by

1046 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58, NO. 3, JUNE 2011

until becomes large enough to make it necessary to replace
(A6) with (A4) and (A5).

REFERENCES
[1] L. Edmonds, A Basic Analysis of EDACWord Error Rates Internal JPL

Interoffice Memo, Jun. 23, 2000.
[2] J. A. Zoutendyk et al., “Single-Event Upset (SEU) in a DRAM with

on-chip error correction,” IEEE Trans. Nucl. Sci., vol. NS-34, no. 6,
pp. 1310–1315, Dec. 1987.

[3] L. Edmonds, Analysis of SEU Rates in TMR Devices Internal Doc-
ument, Nov. 22, 2008 [Online]. Available: http://trs-new.jpl.nasa.gov/
dspace/bitstream/2014/41123/1/09-6.pdf

[4] D. G. Mavis et al., “Multiple bit upsets and error mitigation in ultra-
deep submicron SRAMS,” IEEE Trans. Nucl. Sci., vol. 55, no. 6, pp.
3288–3294, Dec. 2008.

[5] G. R. Allen, G. Swift, and C. Carmichael, Virtex-4QV Static SEU
Characterization Summary [Online]. Available: http://parts.jpl.nasa.
gov/docs/NEPP07/NEPP07FPGAv4Static.pdf

[6] G. R. Allen, Virtex-4QV Dynamic and Mitigated Single Event Upset
Characterization Summary [Online]. Available: http://trs-new.jpl.nasa.
gov/dspace/bitstream/2014/41104/1/09-04.pdf

[7] Radiation Tolerant Virtex-4 QPro Family Overview, Dec. 16, 2008
[Online]. Available: http://www.xilinx.com/support/documenta-
tion/data_sheets/ds653.pdf

[8] C. Carmichael, Triple Module Redundancy Design Techniques
for Virtex FPGAs [Online]. Available: http://www.xilinx.com/sup-
port/documentation/application_notes/xapp197.pdf

[9] “Xilinx TMRTool User Guide,” ver. UG156 v2.2, Sep. 12, 2007.
[10] “PlanAhead User Guide” ver. UG632, Dec. 1, 2009 [Online].

Available: http://www.xilinx.com/support/documentation/sw_man-
uals/xilinx11/PlanAhead_UserGuide.pdf, accessed Nov. 29, 2010

